כתבות עם התגית קורס למידה עמוקה

מדריך זה נכתב על ידי ג'ף מוסקוביץ

לפני מספר ימים כתבתי פוסט בקבוצת הפייסבוק Machine & Deep Learning Israel שעסק במספר פרויקטים שעשיתי לאחרונה. בסוף הפוסט הצעתי, בדרך אגב, עזרה לכל מי שמעוניין לקבל המלצה על קורסים רלוונטיים או איך להתחיל להתמקצע בתחום ה-Machine learning. להפתעתי גיליתי שיש הרבה אנשים בקבוצה שמעוניינים במידע הזה אז במקום לדבר עם כולם בנפרד, אני מאגד את כל ההמלצות שלי במדריך הזה שלפניכם. לפני שאנחנו מתחילים, אני אבקש סליחה מראש על שגיאות הכתיב שלי – עברית היא לא שפת האם שלי.

הרקע שלי

נתחיל עם הבהרה קצרה על הרקע שלי, מאחר וקיבלתי הרבה שאלות בסגנון הזה:

״אבל ג׳ף, בטח יש לך דוקטורט בחילוק ארוך מתקדם או משהו ויש לי רק תואר שני בזה. איך אני אסתדר עם המתמטיקה??״

יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה. זהו.

״אבל זה נושא די טכני, אני עדיין יכול לעשות את הקורסים האלה אם יש לי רק תואר ראשון במדע מחשב??״

עוד פעם, יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה …

תירגעו. כן, זה אפשרי.

כמו שMark Twain אמר:

"Never let your schooling interfere with your education”

דרישות קדם

דרישות הקדם היחידות הן סביב כישורי המתמטיקה שלכם, אתם תצטרכו הבנה בסיסית (באמת בסיסית) בנושאים הבאים:

  1. אלגברה לינארית.
  2. חדו"א (חשבון דיפרנציאלי ואינטגרלי).
  3. הסתברות.

לכתבה המלאה >>

מידי כמה שבועות ישנה בקשה בקבוצה לקורסים מומלצים בתחום ה-Machine learning בכללי וה-Deep learning בפרט. בדיוק לשם כך החלטתי להרים את הכפפה ולהכין רשימה מסודרת של כל הקורסים המומלצים בתחום. את הרשימה הנוכחית דרגו חברי הקהילה וסדר הופעתם ברשימה נגזר מכמות המצביעים עבור כל קורס וקורס. בנוסף לכך הכנתי רשימה של ספרים מומלצים בנושא, עבור מי שרוצה להעמיק מעבר. נתחיל?

1. CS231n: Convolutional Neural Networks for Visual Recognition

הקורס הראשון שקיבל הכי הרבה נקודות והומלץ על ידי מרבית חברי הקהילה הוא: "CS231n: Convolutional Neural Networks for Visual Recognition" של אוניברסיטת סטנפורד. כפי שאתם בוודאי יכולים להבין לפי השם, הקורס עוסק בעיקר בעיבוד תמונה וזיהוי אוביקטים באמצעות רשתות נוירונים. דרישות הבסיס של הקורס הוא הכרה עם שפת התכנות פייתון, רקע באלגברה לינארית, חדו"א ולקינוח שליטה בסטטיסטיקה והסתברות.

אתר הקורס – לחצו כאן.
סילבוס וחומרי עזר – לחצו כאן.
מצגות בלבד – לחצו כאן.
וידאו – לחצו כאן. (מצורף למטה) לכתבה המלאה >>