כתבות עם התגית abstractive summarization

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא:

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension


פינת הסוקר:        

       המלצת קריאה ממייק: חובה לאנשי NLP, במיוחד לחוקרים העוסקים במודלי שפה, מבוססי טרנספורמרים.

       בהירות כתיבה: גבוהה.

      רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: נדרשת היכרות עם מודלי שפה, המבוססים על טרנספורמרים כמו BERT ו-GPT.

      יישומים פרקטיים אפשריים: גנרוט טקסטים ברמה גבוהה יותר ובדרך פשוטה יותר מאלו של BERT.


פרטי מאמר:

      לינק למאמר: זמין כאן

      לינק לקוד: זמין כאן (בתוך פייטורץי)

      פורסם בתאריך: 29.10.19, בארקיב

      הוצג בכנס: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics


תחומי מאמר: 

  • טרנספורמרים
  • denoising autoencoder
  • מודלים גנרטיביים

תמצית מאמר:  לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא: 

Learning to summarize from human feedback


פינת הסוקר:  

           המלצת קריאה ממייק: מאוד מומלץ.

           בהירות כתיבה: גבוהה מינוס

          רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: הבנה טובה בשיטות הקיימות של abstractive summarization , בטרנספורמרים וידע בסיסי ב-reinforcement learning.

          יישומים פרקטיים אפשריים: אימון של מודלים לתמצות אבסטרקטיבי עם עם פחות דאטה מתויג.


פרטי מאמר:

      לינק למאמר: זמין להורדה.

      לינק לקוד: זמין כאן

     פורסם בתאריך: 27.10.20, בארקיב.

     הוצג בכנס: NeurIPS 2020.


תחומי מאמר:

  • תמצות אבסטרקטיבי (abstractive summarization) של טקסטים
  • למידה באמצעות חיזוקים (RL – reinforcement learning)

כלים מתמטיים, מושגים וסימונים:

  •  טרנספורמרים
  • פונקצית מטרה סרוגייט (surrogate objective – F_sur)
  •  (proximal policy optimization (PPO
  • שיטות אזור אימון (trust region TR)
  • פונקציית גמול (reward function)
  • מרחק KL
  • מבחן ROUGE

תמצית מאמר:  לכתבה המלאה >>

X