כתבות עם התגית chi2 divergence

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא:

Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation


פינת הסוקר:

            המלצת קריאה ממייק:  מומלץ למביני עניין בטכניקות מורכבות ל -domain adaptation.

           בהירות כתיבה: בינונית

           רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: הבנה עמוקה בתכונות של מרחקים שונים בין מידות הסתברות והבנה טובה בבעיות אופטימיזציה עם אילוצים. הבנה בטרנספורט אופטימלי רצויה גם כן. 

          יישומים פרקטיים אפשריים: ניתן להשתמש בגישה זו לאימון של גאנים כאשר סט האימון חשוד ללהכיל דוגמאות זרות וגם כן למשימות UDA.


פרטי מאמר:

      לינק למאמר: זמין להורדה.

      לינק לקוד: זמין כאן

      פורסם בתאריך: 12.10.20, בארקיב.

      הוצג בכנס: NeurIPS 2020


תחום מאמר: 

  • מרחק בין דאטהסטים עם אווטליירים (outliers)
  • מודלים גנרטיביים (GANs)
  • אדפטצית דומיינים בלתי מונחית  (unsupervised domain adaptation – UDA)

כלים מתמטיים, מושגים וסימונים:

  • טרנספורט אופטימלי (OT)
  • טרנספורט אופטימלי רובסטי (ROT)
  • טרנספורט אופטימלי בלתי מאוזן (UOT)
  • מרחק וסרשטיין (WD), מרחק f ומרחק chi-2 בין מידות הסתברות (f-divergence)
  • בעיות אופטימיזציה מינימקס (minimax problems)
  • פונקציות ליפשיץ עם מקדם 1 (Lip-1)
  • דוגמאות לא טיפוסיות או אווטליירים (OL)

תמצית מאמר: לכתבה המלאה >>

X