ארכיון כתבות עבור דצמבר, 2018

השבוע, כמידי שבוע, אני מאגד במקום אחד את כל המידע החשוב שעלה בקבוצה ואת כל הפוסטים שקיבלו הכי הרבה חשיפה. כפי שאתם בוודאי יודעים, הרשימה הזו נשלחת גם בניוזלטר שלנו כמידי שבוע (הירשמו כאן!). את הניוזלטר המלא ניתן למצוא כאן (לינק לכל האירועים בינואר וכל המשרות שנכנסו השבוע).

לכתבה המלאה >>

וואו, השבוע היה לנו המון פוסטים מעולים וחשובים בקבוצה. ספרתי בקלות יותר מ-15 פוסטים שכאלה ועשיתי את מרבית המאמצים כדי לארגן לכם את כולם במקום אחד מסודר. כפי שאתם בוודאי יודעים, הרשימה הזו נשלחת גם בניוזלטר שלנו כמידי שבוע (הירשמו כאן!). הניוזלטר המלא ניתן למצוא כאן.

Group's Highlights from last week

1. Noam Cohen from the Technion shared with us a wonderful blog post about "A Signal Processing Perspective For Graph Structured Information ". It got many upvoted so don't miss it.

2. Iyar Lin needed to settle an argument with a coworker so he created an interesting poll at the group which got many votes. If that's not enough he just published a test he maid to check some insights he got from the group.

3. Gidi Shperber shared the second part of this blog post "A different kind of (deep) learning: part 2". We all loved the first one so be sure to check this one also.

4. The one and only, Jonathan Laserson, shared with us a blog post he wrote about this work at Zebra medical. If you need to read only one post make it this one.

לכתבה המלאה >>

אני מקבל לא מעט פניות מחברי הקבוצה שמחפשים הכוונה לקורס או הכשרה פרונטליים כלשהם בתחום של Machine Learning. בעקבות ההתעניינות העולה וגוברת בתחום, צצו לא מעט יוזמות כאלה או אחרות המציעות ללמד אתכם את רזי המקצוע ואף להכין אתכם לשוק התעסוקה. לאחר לא מעט בקשות סיוע ועזרה, בעיקר בהודעות פרטיות או שיחות אחד על אחד, החלטתי לרכז כמה מהתובנות שאני משתף עם כל מי שבוחר להתייעץ איתי בנוגע לקורסים השונים הקיימים בשוק.

לפני שאנחנו צוללים פנימה אני אציין מספר נקודות חשובות מאוד שיש לקחת אותן בחשבון. הנקודה הראשונה היא שמדובר על דעתי האישית בלבד, אשר מבוססת על שיחות שקיימתי הן עם מעסיקים שונים והן עם חלק לא קטן מהגופים שעומדים מאחורי הקורסים הללו. הנקודה השנייה, ואולי החשובה ביותר, היא שאין קיצורי דרך. מרבית האנשים שעוסקים בתחום הגיעו אליו לאחר שלמדו תואר מתקדם השייך לעולם המדעיים המדויקים (עם עדיפות למדמ"ח). אם אתם מגיעים מעולם אחר לחלוטין תצטרכו לעשות לא מעט השלמות כדי להגיע למצב שבו אתם יכולים להתחיל לעסוק בתחום – אך גם לכך ראינו תקדימים. הסיבה שאני מדגיש את חסמי הכניסה היא כדי לפזר את שלל ההבטחות שחלק מבעלי הקורסים זורקים באוויר. השוק אומנם צמא לאנשים איכותיים, אך עדיין המעסיקים לא מוכנים להתפשר על הרמה של המועמדים השונים.

הנקודה השלישית היא כי מרבית המידע הרלוונטי זמין וקיים באינטרנט בצורה חופשית ונגישה לכל. בעבר פרסמתי רשימה של קורסים מקוונים שהומלצו על חברי הקהילה, אשר זמינים בחינם באופן מלא כולל הסילבוס, המצגות, תרגילי הבית ועוד. דוגמא אחת מצוינת לכך הוא הקורס של סטנפורד המככב מזה זמן רב בראש מצעד הקורסים בתחום ה-Deep Learning. לא לחינם בחרנו להעביר דווקא אותו בקורס ההתנדבותי שאנו מעבירים לקהילה. הקורס הנ"ל הוא דוגמא מצוינת לשפע המידע הזמין ברשת, כאשר מידי חודש מתפרסמים עוד ועוד קורסים פתוחים לקהל שמנגישים תחום כזה או אחר בעולם התוכן שלנו. אם קורסים אינם דרך הלמידה המועדפת עליכם, תשמחו לדעת שיש גם ספרים מומלצים בתחום שיכולים לסייע לכם להיכנס לתחום לצבור ידע תיאורטי ופרקטי. כל זאת ועדיין לא ציינו את הקורסים בתשלום באתרי הלמידה האונליין הגדולים בעולם שכולם כאחד מציעים שלל קורסים בתחום.

לסיכום, באם בכל זאת אתם מעוניינים בקורס פרונטליי, בין אם זה עבור המסגרת, התוכן בעברית, הלמידה בצוותא או אפילו החניכה האישית – ככל הנראה ישנם קורסים שיתאימו לכם. עכשיו נשאלת השאלה, כיצד לבחור את הקורס הנכון עבורכם. לשם כך סיכמתי מספר נקודות שיכולות לשפוך אור על התהליך עצמו ולסייע לכם לקבל את ההחלטה הנכונה ביותר עבור הקריירה שלכם.

1. מרצים וסילבוס

הדבר הראשון, ואולי הטריוויאלי ביותר, שיש לעשות כאשר בוחנים קורס הוא לבחון את סגל המרצים ואת הסילבוס הקיים באתר הקורס. בדקו ביסודיות מי מעביר את ההרצאות לאורך כל הקורס ומה הניסיון של המרצים השונים. אתם תרצו כאלה שידעו להעניק לכם את הידע התאורטי והאקדמי על מנת לצבור בסיס חזק – בסיס שיש לו חשיבות רבה אצל לא מעט מהמעסיקים. לצד הנחה זו, תרצו גם אנשי תעשייה שיודעים לתרגם את כל מה שלמדתם לעולם האמיתי ואפילו להסביר לכם איך להעביר את המודל שהכנתם לפרודקשיין. חשוב שסגל המרצים ידע להביא מענה לשני האלמנטים החשובים הללו מאחר ולהם חשיבות רבה עבור מי שרוצה למצוא עבודה חדשה או לבצע שינוי קריירה משמעותי. לשמחתנו, בעידן האינטרנט, מאוד קל למצוא מידע אודות המרצים, ואף לבחון את היסטוריית התעסוקה/מחקר שלהם ובכך לנסות להבין האם יוכלו לספק לכם את הערך הנדרש. עוד טיפ קטן, חפשו גם כאלה שיש להם ניסיון בהוראה או כאלה שלימדו במוסדות לימוד שונים (לא בהכרח באקדמיה). זכרו, ידע בתחום לא מבטיח יכולת גבוהה בהעברת הידע.

לצד המרצים, העוגן הנוסף שיש לכם בעת בחינת הקורס הוא הסילבוס. מסמך זה אמור לאגד את כל הנושאים והטכנולוגיות אותם תלמדו במהלך הקורס ואולי אף יכלול התייחסות בנוגע לפרויקטי גמר או מטלות לאורך הקורס. חשוב לבחון את הסילבוס ולעבור עליו ביסודיות בכדי להבין האם הוא בכללותו יוכל לספק לכם את הידע הנדרש לעמידה ביעד שהצבתם לעצמם. מה לעשות אם אין לכם מושג מה כתוב בסילבוס ואם המונחים השונים נראים לכם כמו סינית?

לכתבה המלאה >>

בשבוע שעבר התחלתי ניסוי קטן שבו אני מפרסם גם כאן בבלוג את כל הפוסטים החשובים שעלו בקבוצה בשבוע החולף (לצד הפרסום בניוזלטר). בשבוע שעבר קבלתי פידבקים מעולים לכן אני ממשיך עם כך גם השבוע. דרך אגב, אתם יכולים למצוא את הניוזלטר המלא בלינק הבא (יש בו מידע על המיטאפ שלו ועל כל המשרות החדשות שהתווספו ללוח משרות). אם אתם רוצים לקבל את הניוזלטר בצורה אוטומטית פשוט תירשמו כאן.

כפי שאתם יכולים לראות השבוע היה לנו שבוע מצוין עם לא מעט תוכן איכותי בקבוצה. מרבית הדיונים שנפתחו היו סביב עבודות ומאמרים חדשים שנכתבו לאחורנה והצליחו ליצור עניין רב בקרב חברי הקהילה. לשמחתי השבוע היו גם כמה מאמרים ופוסטים שנכתבו על ידי חברה הקבוצה עצמם מה שתמיד מצוין ויוצר דיונים מעולים.

Group's Highlights from last week

1. Imry Kissos from Amazon shared an interesting blog post from Google with the title "TF-Ranking: A Scalable TensorFlow Library for Learning-to-Rank". Imry also shared this great content: "Unsupervised Deep Learning – Google DeepMind & Facebook Artificial Intelligence NeurIPS 2018".

2. Amitai Armon from Intel shared with us an article they released at NeurIPS 2018. The article name is "Automated Testing of Graphics Units by Deep-Learning Detection of Visual Anomalies".

3. Yonatan Hadar from YellowRoad made us all feel much better with his new article: "Top Examples of Why Data Science is Not Just .fit().predict()".

4. Yam Peleg from Deep Trading open our eyes with this great article: "Auto-Keras: Efficient Neural Architecture Search with Network Morphism".

5. Rani Horev from Snip shared a new cool tool that he developed which will make your life easier next time you would find a new article.

6. Assaf Shocher from Weizmann Institute of Science shared an article he wrote with Shai Bagon, Phillip Isola, and Michal Irani. The article name is: "Internal Distribution Matching for Natural Image Retargeting". If you need to read only one post, make it this one.

7. Bonus: The one and only, Gal Yona from Cellebrite started a very important poll. Don't miss it.

קוראי הניוזלטר האדוקים, בוודאי יודעים שאני מסכם מידי שבוע את כל הפוסטים החשובים ביותר שעלו בקבוצת פייסבוק של הקהילה. כל שבוע אני סורק את הקבוצה ומחפש אחר הדיונים המרתקים ביותר שהתקיימו ומרכז את כולם במקום אחד כדי שאתם תוכלו לוודא שלא פספסתם אף נושא חשוב שעלה באותו השבוע. לאחרונה קבלתי הרבה בקשות להעביר את הפורמט של הסיכום השבועי למקום שיהיה יותר קל לשתף אותו ולשלוח לחברים. לכן, אני אתחיל לכתוב גם כאן בבלוג את הסיכום השבועי. חשוב לי להדגיש שבכל מקרה אשלח את הסיכום השבועי כלינק מסודר בניוזלטר, ככה שלא הרבה הולך להשתנות.

דרך אגב, אם אתם רוצים לוודא שאתם לא מפספסים את הסיכום השבועי, פשוט תירשמו לניוזלטר וככה תוכלו להישאר מעודכנים תמיד. כל שישי בבוקר יחכה לכם בתיבת המייל ניוזלטר חדש עם מידע שחשוב שתכירו. עוד סיבה ממש טובה להירשם לניוזלטר היא שאני מעדכן שם מידי פעם על כל מיני יוזמות ושיתופי פעולה שאני עובד עליהם הרבה לפני שהם עולים לקבוצה (ככה אני יכול לבדוק את התגובות לפני 🙂 ). בקיצור אל תפספסו.

עוד הערה קטנה, הסיכום השבועי ימשיך להיות באנגלית כי ככה יותר קל לכתוב אותו בצורה רציפה ללא ערבוב של האנגלית והעברית. נתחיל?

לכתבה המלאה >>

X