כתבות עם התגית Fashion-MNIST

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא:

Geometric Dataset Distances via Optimal Transport


פינת הסוקר:        

       המלצת קריאה ממייק: חובה למתעניינים בשיטות של domain adaptation.

       בהירות כתיבה: בינונית.

      רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: נדרשת היכרות בסיסית עם שיטות domain adaptation והבנה טובה בכל מה שקשור לטרנספורט האופטימלי.

      יישומים פרקטיים אפשריים: מציאת זוגות של דאטהסטים ״נוחים״ לביצוע domain adaptation של מודלים ביניהם.


פרטי מאמר:

      לינק למאמר: זמין להורדה

      לינק לקוד: לא נמצא בארקיב

      פורסם בתאריך: 07.02.20, בארקיב

      הוצג בכנס: NeurIPS2020


תחום מאמר:

  • אדפטציה בין דומיינים (domain adaptation)
  • חקר של דמיון בין דאטהסטים
  • transfer learning 

כלים ומושגים מתמטיים במאמר:


תמצית מאמר:  לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא: 

Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation


פינת הסוקר:  

       המלצת קריאה ממייק: חובה רק למי שמתעניין Exemplar Models וגם מבין קצת ב- VAE – לאחרים ניתן להסתפק בסקירה :). 

       בהירות כתיבה:  בינונית.

       רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: הבנה טובה בעקרונות VAE, ידע בסיסי ב- kernel density models.

       יישומים פרקטיים אפשריים: יצירה של דוגמאות חדשות למטרת אוגמנטציה של דטאסטים קיימים למשימות שונות.


פרטי מאמר:

      לינק למאמר: זמין להורדה.

      לינק לקוד: כאן.

      פורסם בתאריך: 04.03.21, בארקיב.

      הוצג בכנס: NeurIPS 2020.


תחום מאמר:

  • variational autoencoder – VAE
  • מודלים גנרטיביים לא פרמטריים שיוצרים דאטה "ישירות מהדוגמאות של סט האימון" (exemplar generative models – EGM).

כלים מתמטיים, מושגים וסימונים:

מבוא: לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא: 

Sharpness-Aware Minimization for Efficiently Improving Generalization

פינת הסוקר:  

          המלצת קריאה ממייק: חובה לאלו שמתעניינים מה קורה מאחורי הקלעים בתהליך אימון של רשתות נוירונים.

          בהירות כתיבה:  גבוהה מאוד.

         רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: היכרת טובה עם שיטות אופטימיזציה עבור בעיות עם משתנים מרובים.

        יישומים פרקטיים אפשריים: שיפור יכולת הכללה של רשתות על ידי החלפת בעיית מזעור לוס הרגילה ב-SAM.


פרטי מאמר:

 לינק למאמר: זמין להורדה.

  לינק לקוד: כאן.

 פורסם בתאריך: 04.12.20, בארקיב.

 הוצג בכנס:ICLR 2021.


תחום מאמר:

  • חקר שיטות אופטימיזציה לאימון של רשתות נוירונים.

כלים מתמטיים, מושגים וסימונים:

  • יכולת הכללה של רשת נוירונים.
  • Gradient Descent -GD.
  • הסיאן (Hessian) של פונקציה.
  • בעיית הנורמה הדואלית (dual norm problem).

תמצית מאמר:  לכתבה המלאה >>

X