כתבות עם התגית Geoff Pleiss

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא: 

Regularizing Towards Permutation Invariance in Recurrent Models


פינת הסוקר:  

           המלצת קריאה ממייק: כמעט חובה (לא חייבים אך ממש מומלץ).

          בהירות כתיבה:  גבוהה.

         רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: בינונית מינוס – צריך להבין מה זה RNN ותכונותיו הבסיסיות. בנוסף מומלץ לרענן את הידע הבסיסי בקומבינטוריקה (תמורות) ובתורת הקבוצות (מושגי יסוד).

        יישומים פרקטיים אפשריים: ניתן להשתמש בטכניקה זו בשביל משימות עיבוד סדרות אינווריאנטיות (באופן מלא או חלקי) לסדר איבריהן כמו משימות זיהוי של ענני נקודות,מציאת דמיון בין סטים של אובייקטים, זיהוי אותות ECC וכדומה.


פרטי מאמר:

      לינק למאמר: זמין להורדה.

      לינק לקוד: לא הצלחתי לאתר.

      פורסם בתאריך: 25.12.20, בארקיב.

      הוצג בכנס: NeurIPSi 2020.


תחומי מאמר:

  • רשתות מסוג RNN.
  • משימות אינווריאנטיות לסדר של קלט.

כלים מתמטיים, מושגים וסימונים:

  • תמורה (פרמוטציה) של סדרת קלט (יסומן כ- p).

תמצית מאמר:

לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא: 

Identifying Mislabeled Data using the Area Under the Margin Ranking


פינת הסוקר:

המלצת קריאה ממייק: כמעט חובה – (לא חובה אבל קרוב לזה 😉 ).

בהירות כתיבה: גבוהה

רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: היכרות בסיסית עם מושגי יסוד של הלמידה העמוקה (בעיקר אלו הקשורות לאימון של רשתות נוירונים).

יישומים פרקטיים אפשריים: אופטימיזציה של תהליך אימון של רשתות נוירונים עי״ זיהוי של דוגמאות מתיוגות תוך כדי האימון.


פרטי מאמר:

לינק למאמר: זמין להורדה.

לינק לקוד: כאן.

פורסם בתאריך: 23.12.2021, בארקיב. 

הוצג בכנס: NeurIPS 2020.

תחומי מאמר:

  • זיהוי דוגמאות בעלות לייבלים שגויים בתהליך אימון של רשתות נוירונים.

כלים מתמטיים הסימונים:

  • לוגיטים (logits):  פלט של השכבה האחרונה של רשת סיווג (לפני הנרמול softmax/sigmoid).

תחומים בהם ניתן להשתמש בגישה המוצעת:

  • למידה semi-supervised.
  • אוגמנטציה של דאטהסטים.

תמצית מאמר:

לכתבה המלאה >>

X