כתבות עם התגית Importance Sampling

סקירה זו היא חלק מפינה קבועה בה שותפיי ואנוכי סוקרים מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמנו, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרנו לסקירה את המאמר שנקרא: 

Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration


פינת הסוקר:  

      המלצת קריאה ממייק ואברהם: שווה קריאה לחובבי למידה ייצוגית (unsupervised learning).

      בהירות כתיבה: בינונית

     ידע מוקדם

  • הבנה בעקרונות הבסיסיים של למידה יצוגית.
  • הבנה בשיטות אימון ניגודיות (contrastive).
  • importance sampling.

   יישומים פרקטיים אפשריים: שיפור באיכות ייצוג של דאטה המופק באמצעות מגוון שיטות של למידה ייצוגית


פרטי מאמר:

      מאמר: זמין להורדה.

      קוד: כאן

      פורסם בתאריך: 15.12.21, בארקיב.

      הוצג בכנס: NeurIPS 2021 Poster


תחומי מאמר:

  • self-supervised learning

כלים מתמטיים, מושגים וסימונים:

לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא:

Improving GAN Training with Probability Ratio Clipping and Sample Reweighting


פינת הסוקר:   

           המלצת קריאה ממייק: מומלץ אך לא חובה לאלו שרוצים להתעמק בשיטות אימון של GANs.

          בהירות כתיבה: בינונית פלוס.

         רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: הבנה טובה בווסרשטיין גאן וכל מה שקשור אליו, הכרה בסיסית בשיטות מעולם הסטטיסטיקה כמו importance sampling, רקע בסיסי בלמידה באמצעות חיזוקים (Reinforcement learning) .

        יישומים פרקטיים אפשריים: אימון גאן משופר במגוון תרחישים


פרטי מאמר:

      לינק למאמר: זמין להורדה.

      לינק לקוד: .זמין כאן.

      פורסם בתאריך: 30.10.2020, בארקיב.

      הוצג בכנס: NeurIPS 2020.


תחומי מאמר:

  • גאנים. 
  • שיטות אימון של גאנים.

כלים מתמטיים, מושגים וסימונים:  

  • וסרשטיין WGAN) GAN).
  • מרחק וסרשטיין (WD).
  • פונקצית ליפשיץ.
  • שיטות וריאציוניות לבעיות אופטימיזציה בתחום הרשתות הגנרטיביות כמו GAN.
  • גישות מתורת למידת החיזוק (RL):  אופטימיזציה של פוליסי (Policy Optimization – PO) דרך פתרון של בעיית אופטימיזציה עם פונקצית מטרה חלופית – surrogate.
  • שיטות דגימה: IM)  Importance Sampling).
  • מרחקים בין מידות הסתברות: מרחק KL ומרחק KL הפוך.
  • אלגוריתמים של EM)  Expectation-Maximization).

תמצית מאמר:  לכתבה המלאה >>

X