כתבות עם התגית Resnet

סקירה זו היא חלק מפינה קבועה של סקירת מאמרים חשובים בתחום ה-ML/DL, בהם מוצגת בעברית גרסה פשוטה וברורה של מאמרים נבחרים. במידה ותרצו לקרוא את המאמרים הנוספים שסוכמו, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקור מאמר שאני שותף בכתיבה שלו, יחד עם שותפים מ-SIRC – Samsung Israel R&D Center:

Layer Folding: Neural Network Depth Reduction using Activation Linearization

מאת: Amir Ben Dror, Niv Zehngut, Avraham Raviv, Evgeny Artyomov, Ran Vitek, Roy Jevnisek.


פינת הסוקר:

    המלצת קריאה: מומלץ מאוד לכל מי שמתעסק ברשתות נוירונים מיועדות למכשירי קצה (מובייל, IoT וכדו').

    בהירות כתיבה: גבוהה.

    רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: נדרשת היכרות בסיסית עם רשתות קונבלוציה. המאמר קל להבנה וכמעט לא מכיל נוסחאות מתמטיות.

    יישומים פרקטיים אפשריים: יצירת רשתות פחות עמוקות המקנות שיפור ב-inference time וצריכת סוללה כמעט ללא פגיעה בדיוק הרשתות.


פרטי מאמר:

    לינק למאמר: זמין כאן

    לינק לקוד: זמין כאן (PyTorch)

    פורסם בתאריך: 17.06.21, בארקיב


רקע ותמצית המאמר: לכתבה המלאה >>

אני כמעט תמיד מתעצבן כשיש עבודה שטוענת שהיא "מגדירה את ה-Resnet מחדש". בדרך כלל מדובר באיזשהי אקטיבציה חדשה (מישהו שמע מ-Mish?) אבל לרוב יש לעבודות האלה אחת משלוש בעיות:

  1. החוקרים ניסו לאמן רק על משימה אחת (בדרך כלל קלסיפיקציה של תמונות)
  2. יש איזשהו טריידאוף שהוא לא תמיד ברור (האימון נהיה מהיר יותר, אבל התוצאות פחות טובות)
  3. אין קוד פתוח.

הבעיה השלישית היא כמובן הכי חמורה, כי כדי שאני אנסה להטמיע מאמר בתוך פרוייקט שאני עובד עליו כדאי שזה יהיה משהו קל להטמעה. בעיה מספר אחת גם חמורה כי אני רוצה לדעת שגם אם אני כבר השקעתי את הזמן להשתמש בטריק אז שהסיכויים גבוהים שזה באמת יעזור.

אז עם הפתיח הזה, בואו נדבר על:

ReZero is All You Need: Fast Convergence at Large Depth

Bachlechner, B. Majumder, H. Mao, G. Cottrell, J. McAuley (UC San Diego, 2020)

לכתבה המלאה >>

הבלוג פוסט נכתב במקור כפוסט על ידי יואב רמון בקבוצת Machine & Deep learning Israel

 

Pruning neural networks without any data by iteratively conserving synaptic flow


H. TANAKA, D. KUNIN, D. YAMINS, S. GANGULI (NTT + STANFORD)

מאמר שלדעתי הוא סופר משפיע, שילוב של עבודה מתמטית טובה, נושא עם חשיבות סופר פרקטית ובסוף גם קוד פתוח. יש פה הקדמה תיאורטית שלדעתי עוזרת להבין למה המאמר חשוב, ממליץ לקרוא אותה לכל מי שלא שוחה ממש בתחום של PRUNING.

לכתבה המלאה >>

X