כתבות מאת אברהם רביב

חלק א' – מבוא

אחד הנושאים הבולטים בתחום למידה עמוקה בשנה האחרונה הוא Multiple Modalities – שילוב דאטה ממספר דומיינים באותו מודל, כמו למשל מודל המסוגל לעבד יחד וידאו ואודיו, או לחילופין מודל היודע להפוך תמונה לטקסט ולהיפך. כמובן שתחום זה אינו חדש במחקר, אך לאחרונה יש בו חידושים טכנולוגיים פורצי דרך יחד עם תוצאות מדהימות במגוון רחב של משימות. מעבר לעובדה שיש יותר ויותר אפליקציות המשלבות דאטה ממספר דומיינים, מה שמגביר את ההתעניינות בתחום הן מבחינה מחקרית והן מבחינת פיתוח, נראה שיש לפופולריות הזו סיבה מהותית יותר. מודל המשלב בתוכו יכולת לעבד ולשלב דאטה מדומיינים שונים מצליח "להבין" יותר לעומק את המבנה הדאטה שהוא מקבל ועקב כך הביצועים שלו טובים יותר. מחקרים חדשים המתבססים על שילוב של דומיינים מראים תפיסה טבעית יותר של הקלט, מה שמאפשר למודל ללמוד בצורה יותר איכותית. בכתבה זו נסקור אחד הרעיונות המרכזיים לאימון מודלים המשלבים דאטה טקסטואלי וויזואלי. אמנם גישה זו הוצעה כבר בעבר אך היא שוכללה בצורה משמעותית בשנה האחרונה ולא מעט מאמרים עכשוויים מבוססים עליה. נעבור בקצרה על כמה עבודות מרכזיות המציעות שיטות לבניית ייצוג של דאטה מולטימודלי המורכב מטקסט ותמונות. לכתבה המלאה >>

האם כדאי להשתמש ב-PyTorch או ב-TensorFlow? זו אולי אחת השאלות הכי נפוצות בקרב קהילת ה-AI, והתשובה רחוקה מלהיות ברורה וחד משמעית.

כתבה זו סוקרת את שתי הספריות במגוון אספקטים, תוך שימת דגש על היתרונות והחסרונות של כל ספריה. בנוסף, הכתבה נותנת כלים למפתח המתלבט איך לבחור נכון את הספריה המתאימה עבורו.


PyTorch ו-TensorFlow הן הספריות הפופולריות ביותר היום הנוגעות ללמידה עמוקה, והשאלה איזה מהן עדיפה יותר רחוקה מלהיות פשוטה. הוויכוח על איזו ספריה היא הטובה ביותר מתקיים כמעט מרגע הולדתן, כאשר לכל ספריה יש את התומכים שלה. למעשה, שתי הספריות פותחו תוך שנים ספורות בלבד, וככל שהן משתכללות, כך הויכוח הולך ומחריף. עם זאת, הרבה מהויכוח נובע מדיס-אנפורמציה או מידע שכבר אינו רלוונטי, מה שהופך את הדיון לעיתים להיות מטעה. בעוד ש-TensorFlow נהנית ממוניטין של ספרייה שרלוונטית לתעשייה ואילו PyTorch מתאימה דווקא למחקר, טענות אלו כבר לא בהכרח מדויקות ל-2022 כפי שנראה בהמשך אלו, ואתם מוזמנים למסע משותף לעמוד יחד על ההבדלים בין שתי הספריות, והיתרונות והחסרונות של כל אחת מהן.

לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקירה את המאמר שנקרא:

You Better Look Twice: a new perspective for designing accurate detectors with reduced computations


פינת הסוקר:  

         המלצת קריאה מאברהם: מומלץ מאוד למתעניינים ב-Computer vision ובפרט בתחום של Object detection.

        בהירות כתיבה: כתוב בצורה פשוטה ומובנת, כולל איורים טובים.

        רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: רקע ב-Vision עוזר אבל לא חובה. אין כמעט משוואות במאמר.

       יישומים פרקטיים אפשריים: רשתות מהירות לזיהוי אובייקטים על גבי מכשירי קצה כמו פלאפונים ומצלמות.


פרטי מאמר:

     לינק למאמר: זמין להורדה.

     לינק לקוד: לא מופיע בארקיב

     פורסם בתאריך: 03.08.21, בארקיב.

     הוצג בכנס: British Machine Vision Conference (BMVC) 2021


תחומי מאמר:

  • זיהוי אובייקטים בתמונות מותאם למכשירי קצה.

ידע מוקדם:

  • רקע ברשתות נוירונים עמוקות מספיקה (החלק הראשון של הסקירה מכיל תיאור קצר של שיטות לזיהוי אובייקטים בתמונה, המספיק להבנת הסקירה)

מבוא: לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה של סקירת מאמרים חשובים בתחום ה-ML/DL, בהם מוצגת בעברית גרסה פשוטה וברורה של מאמרים נבחרים. במידה ותרצו לקרוא את המאמרים הנוספים שסוכמו, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום בחרתי לסקור מאמר שאני שותף בכתיבה שלו, יחד עם שותפים מ-SIRC – Samsung Israel R&D Center:

Layer Folding: Neural Network Depth Reduction using Activation Linearization

מאת: Amir Ben Dror, Niv Zehngut, Avraham Raviv, Evgeny Artyomov, Ran Vitek, Roy Jevnisek.


פינת הסוקר:

    המלצת קריאה: מומלץ מאוד לכל מי שמתעסק ברשתות נוירונים מיועדות למכשירי קצה (מובייל, IoT וכדו').

    בהירות כתיבה: גבוהה.

    רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת מאמר: נדרשת היכרות בסיסית עם רשתות קונבלוציה. המאמר קל להבנה וכמעט לא מכיל נוסחאות מתמטיות.

    יישומים פרקטיים אפשריים: יצירת רשתות פחות עמוקות המקנות שיפור ב-inference time וצריכת סוללה כמעט ללא פגיעה בדיוק הרשתות.


פרטי מאמר:

    לינק למאמר: זמין כאן

    לינק לקוד: זמין כאן (PyTorch)

    פורסם בתאריך: 17.06.21, בארקיב


רקע ותמצית המאמר: לכתבה המלאה >>

X