כתבות עם התגית ML

סקירה זו היא חלק מפינה קבועה בה אני סוקר מאמרים חשובים בתחום ה-ML/DL, וכותב גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמתי, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום נבחר לסקירה המאמר שנקרא:

Do Transformers Really Perform Bad for Graph Representation?


פינת הסוקר:

המלצת קריאה מאופיר: מאמר חשוב מאוד, המספק את החיבור המתבקש בין ארכיטקטורת הטרנספורמרים שתפסה תאוצה במגוון דומיינים כגון ראייה ממוחשבת ועיבוד שפה טבעית למידע גרפי. ארכיטקטורת out-of-the-box שיכולה לשמש בבעיות גרפיות.

בהירות קריאה: גבוהה.

רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת המאמר: נדרשת היכרות עם רשתות נוירונים גרפיות וטרנספורמרים.

יישומים פרקטיים אפשריים: כל בעיית מדעי נתונים גרפית עם דאטא רב, כאשר קיימים מספיק משאבי חישוב (בכל זאת, טרנספורמרים).

פרטי מאמר:

לינק למאמר: זמין כאן

לינק לקוד: זמין להורדה 

פורסם בתאריך: 09/06/2021

הוצג בכתב העת: לא ידוע

תחומי מאמר:

  • רשתות נוירונים גרפיות.
  • טרנספורמרים.

כלים מתמטיים, טכניקות, מושגים וסימונים:

מבוא והסבר כללי על תחום המאמר:

ארכיטקטורת הטרנספורמרים צוברת פופולריות רבה בכמה מהתחומים הגדולים במדעי הנתונים – ראייה ממוחשבת, שפה טבעית וזיהוי דיבור. עם זאת, עד הוצאת המאמר לא הצליחו להחיל את הארכיטקטורה על מידע גרפי בהצלחה. במאמר זה הכותבים הצליחו לעשות זאת.

תמצית המאמר:

לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אנו סוקרים מאמרים חשובים בתחום ה-ML/DL, וכותבים גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמנו, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום נבחר לסקירה המאמר שנקרא:

Highly accurate protein structure prediction with AlphaFold

פינת הסוקר:

המלצת קריאה מאופיר: קריאה מרתקת, במיוחד למי שמתעניין גם בביואינפורמטיקה. כמות המשאבים שהושקעו במחקר והתוצאות שלו מסחררות. מעבר לחידושים עבור הבעיה הספציפית, מוצגות טכניקות חדשות באופן כללי.

בהירות קריאה: בינונית-גבוהה.

רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת המאמר: נדרשת היכרות עם למידה עמוקה. בנוסף, מומלצת מאוד היכרות עם מושגים ביואינפורמטיים.

יישומים פרקטיים אפשריים: מדובר בכלי החזק ביותר כיום לניבוי מבנה של חלבונים, והוא צפוי לשמש רבות לקידום מחקר החלבונים בעולם, בין אם למדע בסיסי ובין אם לתחומים כמו הנדסת חלבונים. בנוגע לשימושים מסחריים – DeepMind שחררה את המודל והמשקולות, אך השימוש במשקולות אסור לשימוש מסחרי.


פרטי מאמר:

לינק למאמר: זמין כאן 

לינק לקוד: זמין להורדה 

פורסם בתאריך: 15/07/2021

הוצג בכתב העת: Nature

תחומי מאמר:

  • ניבוי מבנה תלת מימדי של חלבונים.

כלים מתמטיים, טכניקות, מושגים וסימונים:

  • רשתות נוירונים גרפיות (GNNs).
  • Attention.
  • Skip-connections.

מבוא והסבר כללי על תחום המאמר: לכתבה המלאה >>

סקירה זו היא חלק מפינה קבועה בה אנו סוקרים מאמרים חשובים בתחום ה-ML/DL, וכותבים גרסה פשוטה וברורה יותר שלהם בעברית. במידה ותרצו לקרוא את המאמרים הנוספים שסיכמנו, אתם מוזמנים לבדוק את העמוד שמרכז אותם תחת השם deepnightlearners.


לילה טוב חברים, היום אנחנו שוב בפינתנו deepnightlearners עם סקירה של מאמר בתחום הלמידה העמוקה. היום נבחר לסקירה המאמר שנקרא:

DeeperGCN: All You Need to Train Deeper GCNs


פינת הסוקר:

    המלצת קריאה מאופיר: לכל המתעניינים ברשתות נוירונים גרפיות, גם אם לא תחום העיסוק העיקרי שלהם – יתכן והמאמר יהיה שימושי גם לתחום הבעיה שלהם

    בהירות קריאה: גבוהה

    רמת היכרות עם כלים מתמטיים וטכניקות של ML/DL הנדרשים להבנת המאמר: היכרות עם מושגי יסוד של DL, המאמר כולל מיני-סקירה על GNNs

    יישומים פרקטיים אפשריים: הטכניקות המוצגות במאמר מאפשרות שיפור והעמקה של רשתות נוירונים גרפיות באופן כללי, ואינן מוגבלות לארכיטקטורה ספציפית


פרטי מאמר:

    לינק למאמר: זמין להורדה.

    לינק לקוד: זמין להורדה.

    פורסם בתאריך: 13/6/20, בארקיב.

    הוצג בכנס: גרסה מוקדמת של המאמר הוצגה בעל פה ב-ICCV2019.


תחומי מאמר:

  • רשתות נוירונים גרפיות (GNNs)

כלים מתמטיים, טכניקות, מושגים וסימונים

  • פונקציות אגרגציה (Aggregation functions)
  • קשרים שיוריים (Residual connections)
  • נורמליזציית הודעה (Message normalization)

קישורים להסברים טובים על מושגי יסוד במאמר:

מבוא והסבר כללי על תחום המאמר: לכתבה המלאה >>

X