כתבות עם התגית למידה עמוקה

לאחר הרבה הכנות והפקת לקחים מהקורס הקודם, גיל, ניר, ערן ואני שמחים להודיע כי אנחנו פותחים מחזור נוסף של MDLI Course – קורס מבוא ל-Deep Learning של הקהילה. בבלוג הזה אנחנו נשתף אתכם במידע על הקורס השנה וכמובן נפרסם לינק להרשמה לקראת המחזור השלישי.

למי שלא מכיר: בשנתיים האחרונות החלטנו, ארבעת האדמינים בקבוצה, לקחת את הקורס המוכר של סטנפורד "CS231n: Convolutional Neural Networks for Visual Recognition" ולהעביר אותו בצורה פורנטלית ובעברית באופן התנדבותי לחלוטין. הקורס הועבר לקבוצה של 60 סטודנטים שהגיעו מידי שבוע במשך ארבעה חודשים לגוגל קמפוס כדי ללמוד על התחום. לאחר ארבעת החודשים הצמדנו לבוגרים מנטורים מהתעשייה לטובת פרויקטי גמר המציגים את הידע הנרכש בקורס עצמו.

שני המחזורים הקודמים היו הצלחה. אלו שצלחו את הקורס עד סופו רכשו סט כלים חדש וידע שעזר לחלקם למצוא עבודות חדשות, או לעשות שינוי קריירה בתוך הארגון בהם הם עובדים. השנה אנחנו מתכוונים להפוך את הקורס למקצועי עוד יותר וליישם את כל הלקחים שהפקנו מהמחזור הקודם. אנחנו נוסיף הדרכות על שירות הענן של גוגל, תרגולים סביב עבודות הבית (הודות למתן פרידמן -מצטיין המחזור הראשון) וחיבור חזק יותר לתעשייה בפרויקטי הגמר. כפועל יוצא מכך זה אומר שרף הסינון עולה והרצינות שאנחנו מצפים מהמחזור החדש עולה גם היא.

כמו כן, קחו בחשבון שהקורס הוא מאוד Hands On ומתמטי לכן נדרשים גם ידע מתמטי וגם ידע תכנותי ברמה גבוהה (אלגברה לינארית, חד"וא, הסתברות ופיתון). ידע זה קריטי להבנת הקורס ולהכנת מטלות הבית השונות לכן אנא הירשמו רק אם יש לכם שליטה מספקת בנושאים הנ"ל.

אנחנו מציינים את הנהלים כבר עכשיו, לפני ההרשמה עצמה, כדי שתוכלו לעבור על כל התנאים ולהבין שהם מתאימים לכם. אנחנו לא מתכוונים לעגל פינות והמשמעת הנוקשה נועדה כדי שכל אחד שנבחר יפיק את המירב מהקורס ויצדיק את העובדה שדווקא הוא נבחר על פני מועמד אחר. בדיוק כמו בשנה הקודמת, גם הפעם אנחנו נקפיד על ייצוג שווה בין נשים וגברים בקורס, אך אין זה אומר שנקודה זו משפיעה על הסינון עצמו או על הרף הנדרש.

נהלים חשובים של הקורס:

לכתבה המלאה >>

אני מקבל לא מעט פניות מחברי הקבוצה שמחפשים הכוונה לקורס או הכשרה פרונטליים כלשהם בתחום של Machine Learning. בעקבות ההתעניינות העולה וגוברת בתחום, צצו לא מעט יוזמות כאלה או אחרות המציעות ללמד אתכם את רזי המקצוע ואף להכין אתכם לשוק התעסוקה. לאחר לא מעט בקשות סיוע ועזרה, בעיקר בהודעות פרטיות או שיחות אחד על אחד, החלטתי לרכז כמה מהתובנות שאני משתף עם כל מי שבוחר להתייעץ איתי בנוגע לקורסים השונים הקיימים בשוק.

לפני שאנחנו צוללים פנימה אני אציין מספר נקודות חשובות מאוד שיש לקחת אותן בחשבון. הנקודה הראשונה היא שמדובר על דעתי האישית בלבד, אשר מבוססת על שיחות שקיימתי הן עם מעסיקים שונים והן עם חלק לא קטן מהגופים שעומדים מאחורי הקורסים הללו. הנקודה השנייה, ואולי החשובה ביותר, היא שאין קיצורי דרך. מרבית האנשים שעוסקים בתחום הגיעו אליו לאחר שלמדו תואר מתקדם השייך לעולם המדעיים המדויקים (עם עדיפות למדמ"ח). אם אתם מגיעים מעולם אחר לחלוטין תצטרכו לעשות לא מעט השלמות כדי להגיע למצב שבו אתם יכולים להתחיל לעסוק בתחום – אך גם לכך ראינו תקדימים. הסיבה שאני מדגיש את חסמי הכניסה היא כדי לפזר את שלל ההבטחות שחלק מבעלי הקורסים זורקים באוויר. השוק אומנם צמא לאנשים איכותיים, אך עדיין המעסיקים לא מוכנים להתפשר על הרמה של המועמדים השונים.

הנקודה השלישית היא כי מרבית המידע הרלוונטי זמין וקיים באינטרנט בצורה חופשית ונגישה לכל. בעבר פרסמתי רשימה של קורסים מקוונים שהומלצו על חברי הקהילה, אשר זמינים בחינם באופן מלא כולל הסילבוס, המצגות, תרגילי הבית ועוד. דוגמא אחת מצוינת לכך הוא הקורס של סטנפורד המככב מזה זמן רב בראש מצעד הקורסים בתחום ה-Deep Learning. לא לחינם בחרנו להעביר דווקא אותו בקורס ההתנדבותי שאנו מעבירים לקהילה. הקורס הנ"ל הוא דוגמא מצוינת לשפע המידע הזמין ברשת, כאשר מידי חודש מתפרסמים עוד ועוד קורסים פתוחים לקהל שמנגישים תחום כזה או אחר בעולם התוכן שלנו. אם קורסים אינם דרך הלמידה המועדפת עליכם, תשמחו לדעת שיש גם ספרים מומלצים בתחום שיכולים לסייע לכם להיכנס לתחום לצבור ידע תיאורטי ופרקטי. כל זאת ועדיין לא ציינו את הקורסים בתשלום באתרי הלמידה האונליין הגדולים בעולם שכולם כאחד מציעים שלל קורסים בתחום.

לסיכום, באם בכל זאת אתם מעוניינים בקורס פרונטליי, בין אם זה עבור המסגרת, התוכן בעברית, הלמידה בצוותא או אפילו החניכה האישית – ככל הנראה ישנם קורסים שיתאימו לכם. עכשיו נשאלת השאלה, כיצד לבחור את הקורס הנכון עבורכם. לשם כך סיכמתי מספר נקודות שיכולות לשפוך אור על התהליך עצמו ולסייע לכם לקבל את ההחלטה הנכונה ביותר עבור הקריירה שלכם.

1. מרצים וסילבוס

הדבר הראשון, ואולי הטריוויאלי ביותר, שיש לעשות כאשר בוחנים קורס הוא לבחון את סגל המרצים ואת הסילבוס הקיים באתר הקורס. בדקו ביסודיות מי מעביר את ההרצאות לאורך כל הקורס ומה הניסיון של המרצים השונים. אתם תרצו כאלה שידעו להעניק לכם את הידע התאורטי והאקדמי על מנת לצבור בסיס חזק – בסיס שיש לו חשיבות רבה אצל לא מעט מהמעסיקים. לצד הנחה זו, תרצו גם אנשי תעשייה שיודעים לתרגם את כל מה שלמדתם לעולם האמיתי ואפילו להסביר לכם איך להעביר את המודל שהכנתם לפרודקשיין. חשוב שסגל המרצים ידע להביא מענה לשני האלמנטים החשובים הללו מאחר ולהם חשיבות רבה עבור מי שרוצה למצוא עבודה חדשה או לבצע שינוי קריירה משמעותי. לשמחתנו, בעידן האינטרנט, מאוד קל למצוא מידע אודות המרצים, ואף לבחון את היסטוריית התעסוקה/מחקר שלהם ובכך לנסות להבין האם יוכלו לספק לכם את הערך הנדרש. עוד טיפ קטן, חפשו גם כאלה שיש להם ניסיון בהוראה או כאלה שלימדו במוסדות לימוד שונים (לא בהכרח באקדמיה). זכרו, ידע בתחום לא מבטיח יכולת גבוהה בהעברת הידע.

לצד המרצים, העוגן הנוסף שיש לכם בעת בחינת הקורס הוא הסילבוס. מסמך זה אמור לאגד את כל הנושאים והטכנולוגיות אותם תלמדו במהלך הקורס ואולי אף יכלול התייחסות בנוגע לפרויקטי גמר או מטלות לאורך הקורס. חשוב לבחון את הסילבוס ולעבור עליו ביסודיות בכדי להבין האם הוא בכללותו יוכל לספק לכם את הידע הנדרש לעמידה ביעד שהצבתם לעצמם. מה לעשות אם אין לכם מושג מה כתוב בסילבוס ואם המונחים השונים נראים לכם כמו סינית?

לכתבה המלאה >>

לאחר הרבה הכנות והפקת לקחים מהקורס הקודם, גיל, ניר, ערן ואני שמחים להודיע כי אנחנו פותחים מחזור נוסף לקורס הdeep learning של הקהילה ומפרסמים לינק להרשמה לקראת המחזור הבא.

למי שלא מכיר: בשנה שעברה החלטנו ארבעת האדמינים בקבוצה לקחת את הקורס המוכר של סטנפורד "CS231n: Convolutional Neural Networks for Visual Recognition" ולהעביר אותו בצורה פורנטלית ובעברית באופן התנדבותי לחלוטין – וללא כל עלות למשתתפים. הקורס הועבר לקבוצה של 60 סטודנטים שהגיעו מידי שבוע במשך ארבעה חודשים לגוגל קמפוס כדי ללמוד על התחום. לאחר ארבעת החודשים הצמדנו לבוגרים שרצו מנטורים מהתעשייה לטובת פרויקט גמר שמציג את הידע הנרכש בקורס עצמו.

הקורס הקודם היה הצלחה. אלו שצלחו את הקורס עד סופו רכשו סט כלים חדש וידע שעזר לחלקם למצוא עבודות חדשות או לעשות שינוי קריירה בתוך הארגון בהם הם עובדים. השנה אנחנו מתכוונים להפוך את הקורס למקצועי עוד יותר וליישם את כל הלקחים שהפקנו מהמחזור הקודם. אנחנו נוסיף הדרכות על שירות הענן של גוגל, תרגולים סביב עבודות הבית וחיבור חזק יותר לתעשייה בפרויקטי הגמר. כפועל יוצא מכך זה אומר שרף הסינון עולה והרצינות שאנחנו מצפים מהמחזור החדש עולה גם היא.

כמו כן, קחו בחשבון שהקורס הוא מאוד Hands On ומתמטי לכן נדרשים גם ידע מתמטי ותכנותי ברמה גבוהה (אלגברה לינארית, חד"וא, הסתברות ופיתון). ידע זה קריטי להבנת הקורס ומטלות הבית השונות לכן אנא הירשמו רק אם יש לכם שליטה מספקת בנושאים הנ"ל.

אנחנו מציינים את הנהלים כבר עכשיו, לפני ההרשמה עצמה, כדי שתוכלו לעבור על כל התנאים ולהבין שהם מתאימים לכם. אנחנו לא מתכוונים לעגל פינות והמשמעת הנוקשה נועדה כדי שכל אחד שנבחר יפיק את המירב מהקורס ויצדיק את העובדה שדווקא הוא נבחר על פני מועמד אחר. בדיוק כמו בשנה הקודמת, גם הפעם אנחנו נקפיד על ייצוג שווה בין נשים וגברים בקורס, אך אין זה אומר שנקודה זו משפיעה על הסינון עצמו או על הרף הנדרש.

נהלים חשובים של הקורס:

לכתבה המלאה >>

מדריך זה נכתב על ידי ג'ף מוסקוביץ

לפני מספר ימים כתבתי פוסט בקבוצת הפייסבוק Machine & Deep Learning Israel שעסק במספר פרויקטים שעשיתי לאחרונה. בסוף הפוסט הצעתי, בדרך אגב, עזרה לכל מי שמעוניין לקבל המלצה על קורסים רלוונטיים או איך להתחיל להתמקצע בתחום ה-Machine learning. להפתעתי גיליתי שיש הרבה אנשים בקבוצה שמעוניינים במידע הזה אז במקום לדבר עם כולם בנפרד, אני מאגד את כל ההמלצות שלי במדריך הזה שלפניכם. לפני שאנחנו מתחילים, אני אבקש סליחה מראש על שגיאות הכתיב שלי – עברית היא לא שפת האם שלי.

הרקע שלי

נתחיל עם הבהרה קצרה על הרקע שלי, מאחר וקיבלתי הרבה שאלות בסגנון הזה:

״אבל ג׳ף, בטח יש לך דוקטורט בחילוק ארוך מתקדם או משהו ויש לי רק תואר שני בזה. איך אני אסתדר עם המתמטיקה??״

יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה. זהו.

״אבל זה נושא די טכני, אני עדיין יכול לעשות את הקורסים האלה אם יש לי רק תואר ראשון במדע מחשב??״

עוד פעם, יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה …

תירגעו. כן, זה אפשרי.

כמו שMark Twain אמר:

"Never let your schooling interfere with your education”

דרישות קדם

דרישות הקדם היחידות הן סביב כישורי המתמטיקה שלכם, אתם תצטרכו הבנה בסיסית (באמת בסיסית) בנושאים הבאים:

  1. אלגברה לינארית.
  2. חדו"א (חשבון דיפרנציאלי ואינטגרלי).
  3. הסתברות.

לכתבה המלאה >>

לפני מספר שבועות פרסמתי מאמר שמרכז את כל הקורסים המובילים בנושאי Machine learning ו-Deep learning שהתבסס על המלצות חברי הקהילה הישראלית. בעקבות ההצלחה של המאמר הקודם, החלטתי לרכז את כל הספרים הממולצים ביותר בתחום ולאגד אותם לכדי רשימה אחת מסודרת. חשוב להדגיש כי גם הפעם סדר הופעת הספרים נגזר באופן ישיר מהצבעות חברי הקהילה. עבור כל ספר אני מצרף קישור לרכישה באמזון ולצד זאת גרסה דיגיטלית לשימוש אישי.

1. Understanding Machine Learning: From Theory to Algorithms

הספר הראשון שזכה למרבית הקולות הוא Understanding Machine Learning: From Theory to Algorithms. הספר נכתב על ידי פרופסור שי שליו-שוורץ מהאוניברסיטה העברית בירושלים ופרופסור שי בן-דוד מאוניברסיטת ווטרלו שבקנדה. הספר יצא לאור בשנת 2014 על ידי אוניברסיטת קיימברידג' (Cambridge University Press). על פי תיאור הספר מטרתו היא להציג לקורא את תחום ה-Machine learning ואת האלגוריתמים הנפוצים בנושא. ניתן להתרשם מהתיאור המלא של הספר: לכתבה המלאה >>

בפוסט הקודם הסברנו בקצרה מה זה Machine Learning ופירקנו לגורמים את ההגדרה של המושג כולו. הפעם אנחנו נעסוק בנושא חשוב לא פחות שזוכה ללא מעט כותרות בתקופה האחרונה: Deep Learning. תחום מסעיר זה אחראי על מספר רב של פריצות דרך שהצליחו לחולל שינויים של ממש בכמה מהמוצרים והטכנולוגיות שאנו משתמשים בהם כיום. אז על מה כל הרעש? בכתבה הבאה.

Deep learning (למידה עמוקה) הוא תת תחום של Machine learning העושה שימוש ברשתות נוירונים מלאכותיות לשם ביצוע משימות. בסיסו של תחום זה טמון בשאיפה לחקות את הדרך בה המוח האנושי פועל ולרתום את היעילות של מבנה הנוירונים לשם התמודדות עם אתגרים חישוביים מורכבים לכתבה המלאה >>

X