כתבות עם התגית data scientist

אחת השאלות הנפוצות ביותר בתחום ה-DS/ML היא איך להיכנס לתחום. בעקבות העליה בפופלאריות של עולם הבינה המלאכותית עוד ועוד אנשים מעוניינים לעשות את צעדיהם הראשונים בעולם זה, אך לא תמיד יודעים כיצד. כדי לעשות סדר בנושא ועל מנת לפרוש בפני אלו שבראשית דרכם את האופציות השונות העומדות בפניהם, הוזמנתי על ידי עמית בן דור לשיחה מקיפה על הנושא כחלק מהפודקאסט המצליח "עושים תוכנה". כך יצא שהקלטנו שני פרקים מלאים אשר עוסקים בסוגיה ממספר זוויות שונות – החל מהסבר פשוט לכל תפקיד בתחום ועד טיפים מתקדמים לאיך אפשר להתברג בתעשיית ה-ML בארץ.

בפרק הראשון, הסברנו תחילה מדוע התחום צובר תאוצה רבה כל כך בשנים האחרונות ומה המוטיבציה של אנשים רבים לנסות להצטרף אליו. דברנו על המשכורות הגבוהות, הפיתוח בחזית העשייה, הפן המחקרי של העבודה ועוד סיבות נוספות. לאחר מכן, ורגע לפני שאנחנו צוללים לאיך אפשר להיכנס לתחום, שטחנו בפני המאזינים את מגוון התפקידים הרחב שיש בעולם ה-AI והסברנו בצורה פשוטה מה מגדיר כל תפקיד, מה תחום העיסוק שלו ובמה הוא שונה משאר התפקידים. התייחסנו כמובן לתפקידי ה-Data scientist, Data Analyst, חוקר ועוד. זו הזדמנות מצוינת עבור כל מי שלא היה בטוח בהבדלים בין התפקידים, להבין כעת מה מבדיל כל תפקיד ותפקיד.

Listen to "[עושים תוכנה] איך נכנסים לעולם הData science? המתכון המלא" on Spreaker.

לכתבה המלאה >>

נכתב על ידי עמית מנדלבוים, Director, Mellanox AI @ Nvidia, כפוסט בקבוצה MDLI (ממליץ להיכנס לקרוא גם את התגובות).

——————————————-

בצורה קצת יותר מפורטת. למה לעשות תואר שני, איך לעשות תואר שני, וכל הסיבות למה אתם לא עושים או רוצים לעשות תואר שני ולמה הן לא רלוונטיות. אזהרה: פוסט ארוך!

קצת רקע, ראיינתי בשנתיים וחצי האחרונות למעלה מ150 מועמדים לתפקידי דאטה סאיינטיסט. אני שומר על ראש פתוח ולכן ראיינתי כמעט כל סוג אפשרי

1. אנשים ותיקים מאוד בהיי-טק שלאחרונה נכנסו לתחום.

2. אנשים שעשו תואר ראשון (ואולי גם שני ושלישי) ואז עשו קורס של אחת המכללות למיניהן (בלי להזכיר שמות) כולל תוכניות מאוד אינטנסיביות שחלק כאן מכירים.

3. אנשים כמעט בלי רקע בתחום אבל עם רקע מתמטי\מדעי חזק מאוד.

4. אנשים שעובדים כבר כמה שנים בתחום.

5. אנשים שסיימו עכשיו תואר שני בתחום.

6. אנשים שסיימו תואר ראשון ולקחו כמה קורסים + פרויקט.

בלי להיכנס כרגע להכללות ובלי לפגוע באף אחד, ותוך הסתייגות שתמיד תמיד יש יוצאי דופן, להפתעתי (שוב, כי אני מנסה לשמור על ראש פתוח), מי שהפגינו את היכולות הטובות ביותר בראיונות היו אלו שעשו תואר שני בתחום (או לכל הפחות קרוב לתחום) עם סטייה קלה לאנשים שעשו תואר שני או שלישי אחר (למשל פיזיקה, ביולוגיה, מתמטיקה) עם רקע של הצטיינות ונכנסו לתחום לאחרונה דרך המחקר שלהם, עבודה שלהם, או עצמאית. כמובן שאלה שעשו תואר שני וכבר עובדים כמה שנים בתחום היו טובים, אבל אלה למרבה הצער נדירים ביותר.

קצת רקע נוסף שלא תחשבו שאני סתם איזה מתנשא שזורק עליכם "תעשו תואר שני" בלי שיש לכם אפשרות, אז אני התחלתי תואר שני במדעי המחשב, בגיל 30, כשהייתי עם שני ילדים, אחרי שנתיים בתעשייה ועם תואר ראשון בהנדסה (כלומר הרבה השלמות לתואר השני) ועם זה שהייתי צריך גם לעבוד במקביל לחלק מהתואר. וכן, היו אתי בתואר השני לא מעט אנשים כאלה (פחות או יותר), כולם סיימו וכולם עובדים היום בתחום.

אז נתחיל משאלת השאלות, למה בכלל לעשות תואר שני?

לכתבה המלאה >>

חברת לייטריקס הירושלמית היא אחת מחברות האפליקציות המצליחות ביותר בארץ, עם עשרות מליוני הורדות מרחבי העולם. למי שלא מכיר, לייטריקס היא החברה המפתחת שלל אפליקציות פופולריות וזוכות פרסים לעיבוד תמונות ווידאו ועריכת תוכן במובייל. החברה בעיקר מוכרת בזכות לאפליקציית Facetune, שהפכה ללהיט ברחבי העולם המאפשרת יכולות עריכה מתקדמות. כעת מודיעה החברה על השקת תוכנית מלגות חדשה שתאפשר לסטודנטים בתחומי מדעי הנתונים מהאוניברסיטה העברית לקבל תמיכה כספית במהלך התואר.

במסגרת התכנית תעניק לייטריקס מלגות לשנה הראשונה ללימודים במסגרת תואר שני בחוג לסטטיסטיקה באוניברסיטה העברית בירושלים. הסטודנטים שיזכו במלגה יקבלו מענק של 13,800 ש"ח לכיסוי הוצאות שכר הלימוד לשנת הלימודים הנוכחית , וכן 5,000 ש"ח לחודש למשך 12 חודשים בשנת הלימודים 2019-2020.

כדי ללמוד על תוכנית המלגות ועל הפעילות של החברה בתחומי למידת המכונה, קיימתי ראיון קצר עם יניב טנצר המשמש כראש חטיבת ה- Data science בלייטריקס. כפי שחלקכם בוודאי יודעים, לייטריקס פועלת רבות בתחום ואלגוריתמים לומדים הם חלק מאוד משמעותי בפעילות החברה. "בגדול קיימות בחברה שתי חטיבות שמתעסקות בלמידת מכונה אמנם מהיבטים שונים: חטיבת המרקטינג דאטא סיינס וחטיבת העיבוד תמונה. חטיבת המרקטינג דאטא סיינס, אותה אני מוביל, מתעסקת במגוון בעיות מרקטינג מזווית של למידת מכונה. לדוגמא: בניית מודלים לחיזוי הכנסות מקמפיינים שאנחנו מריצים ברשתות החברתיות, שמשרת את האנליסטים בחברה. דוגמא נוספת היא בניית מודלים לחיזוי מבין המשתמשים הקיימים, מי סביר שירכוש מנוי, מה שמאפשר לנו למקד את השיווק. זווית נוספת היא תכנון ניסויים וניתוח תוצאות. בשנה האחרונה השמשנו מערכת Multi – Arm – Bandit. חטיבת העיבוד תמונה מתעסקת בבעיות שונות מתחום העיבוד תמונה כמו סגמנטציה/ זיהוי אובייקטים ועוד." הסביר טנצר. מלבד זאת, טנצר אף הרחיב וסיפר קצר על הטכנולוגיות והמודלים איתם עובדים בחברה: "אנחנו עושים שימוש במגוון מודלים/כלים/טכנולוגיות – החל ממודלים סטנדרטים לקלאסיפיקציה בינארית כמו רגרסיה לוגיסטית ועד מודלי אנליזת הישרדות, מודלי סדרות זמן, רשתות עמוקות ועוד". מודלים אלו, ככל הנראה יהיו חלק מעבודתם של הסטודנטים במידה וירצו להצטרף לחברה במקביל או בסיום לימודיהם.

לכתבה המלאה >>

כמידי שבוע אני מאגד לכם את כל הפוסטים הדיונים החשובים שעלו בקבוצה. השבוע היו לא מעט דיונים מרתקים על מגוון רחב של נושאים שכדאי לכם לבדוק.  כפי שאתם בוודאי יודעים, הרשימה הזו נשלחת גם בניוזלטר שלנו כמידי שבוע (הירשמו כאן!). את הניוזלטר המלא ניתן למצוא כאן (השבוע: סדנא שלי על AI לאנשים לא טכנולוגיים וכמה משרות חדשות מאוד מרתקות).

We had a great week last week (That's why it took me so long to write it). Here you can find all the interesting posts and discussions from the community:

1. Rani Horev shared with us a great summary he wrote for this very interesting article which came recently. Don't miss it.

2. Roey Mechrez and a couple of friends are now running their version of the community course and offer all the northern people a chance to learn the basics of DL for free! check it ASAP. Roey also shared with us this great work called "Photo Wake-Up: 3D Character Animation from a Single Photo ". It's truly magical.

3. Yaron Gurovitch and several other researchers published their work at the Nature magazine! The article is about "Identifying facial phenotypes of genetic disorders using deep learning". If you need to read only one link make it this one.

לכתבה המלאה >>

אנחנו עוסקים לא מעט בקהילה בדרכים בהן ניתן לצרף אנשים נוספים לתחום ולהנגיש, ככל שניתן, את הידע הנדרש כדי להשיג את העבודה הראשונה כ-Data scientist. רבים מכם יודעים כי לא מדובר על משימה קלה במיוחד, השילוב של חוסר הכרה של העולם התוכן לעומקו ומגוון ההכשרות הרחב שיש בשוק, מקשה על בוגרי תארים מתקדמים, או אפילו מפתחים בעלי ניסיון, לעשות את המעבר ולהשיג את דריסת הרגל הנדרשת.

אני מקדיש לנושא זה תשומת לב רבה ולעיתים עולות יוזמות חדשות בקהילה אשר מנסות להעניק מענה הולם לבעיה הזו. כדי להעצים את העשייה שלי בתחום ובשאיפה לעזור לכמה שיותר אנשים, אני כעת חובר לארגון  בשם Israel Tech Challenge, ארגון ללא מטרות רווח, אשר מציע תכנית הכשרה מקיפה ומלאה בתחום ה-Data science. כחלק משיתוף הפעולה שלי עם ITC אני מסייע להם באיתור מועמדים רלוונטיים שיכולים לקחת חלק בתכנית האקסלוסיבית שהם בונים.

קצת פרטים על התכנית עצמה: ההכשרה מתבצעת בתחום ה-Computer Vision (ראייה ממוחשבת) וה-NLP (עיבוד שפה טבעית), כאשר לב ליבה של התכנית היא שימוש בטכניקות מעולם ה-Deep Learning לביצוע משימות בתחום זה. התכנית היא חלק ממסלול ה-Data Science של תכנית ה-Fellows. התכנית הנ"ל מיועדת לבוגרי Bs.c מצטיינים מאוניברסיטאות מובילות בארץ ובעולם, בדגש על בוגרי תארים במדעי המחשב, הנדסה, מתמטיקה, פיסיקה, כימיה וביולוגיה שלהם ידע בתכנות. ההכשרה כולה בנויה משלושה חלקים עיקריים: החלק הראשון, אשר אורך ארבעה חודשים, עוסק בלימוד עצמו ומקנה לסטודנטים את כל הכלים להתמודדות עם בעיות שונות בתחום ה-Data science. בחלק זה מגיעים מרצים אורחים משלל חברות מובילות במשק אשר משתפים מינסיונם בעבודה היומיומית שלהם, וזאת במטרה לחשוף את הסטודנטים לבעיות אמתיות שעולות כחלק מתהליך העבודה. החלק השני כולל חמישה שבועות של התמחות קצרה אצל אחת מהחברות הפועלות עם ITC בהן הסטונדטים עובדים על בעיות מוגדרות עם ליווי של אנשי החברה.

החלק השלישי, אשר אורך חמישה חודשים, הוא התמחות בשכר אצל חברות מובילות בתפקידי פיתוח ומחקר במגוון רחב של חברות אשר פעולות בשיתוף פעולה עם ITC. השכר הממוצע לחודש בזמן ההתמחות הוא 20 אלף שקל לחודש, כאשר בסופו של שלב זה מרבית הסטודנטים כבר מקבלים הצעות מהחברות עצמן למשרות לטווח הארוך. לקורס יש שני מחזורים בשנה, הראשון מתקיים בחודש באפריל ובעוד השני שמתחיל בחודש אוקטובר (בעוד חודשיים). העלות של התכנית כולה היא היא 30,000 שקלים.

הסבר על התכנית

על מנת ללמוד על תכנית ההכשרה לעומק, קיימתי ראיון מקיף עם לואיס וולך, Data Science Lead ב-ITC ובר וינוגרד, יועץ בתחום ה-Data Science ואחד מסגל המורים בקורס. לאויס ובר אמונים על הפיתוח המקצועי של תכנית ההכשרה ושניהם מגיעים עם ניסיון רב בתחום וידע פרקטי בעולמות ה-Data Science. לאורך הראיון נצלול פנימה ונכיר את אבני הבניין השונות של תכנית זו ונבין כיצד היא יכולה לסייע לאלה אשר רוצים לעשות את שינוי הקריירה המיוחל לכתבה המלאה >>

DataHack הוא ארגון ללא מטרת רווח המארגן האקתון שנתי ומפגשי למידה בנושאי ביג דאטה, למידת מכונה, בינה מלאכותית ועוד. ההאקתון מתקיים בירושלים זאת השנה הרביעית ומקדם את האקוסיסטם הירושלמי הצומח, כל שנה מגיעים 400-500 משתתפים מכל רחבי הארץ לשלושה ימים אינטנסיבים של עבודה על פרוייקטים טכנולוגיים חדשניים ויצירתיים. מדובר באחד מהאירועים הטכנולוגיים הגדולים ביותר בעיר ובין ההאקתונים הגדולים ביותר בארץ.

האירוע הוא פסטיבל גדול של דאטה וטכנולוגיה, מחבר בין דיסצפלינות שונות בינהם סטטיסטיקאים, מפתחים, מעצבים, מדעני נתונים וחוקרים. כל שנה נוצרים עשרות רבות של פרוייקטים, לדוגמא בשנים קודמות פיתחו הצוותים פתרונות בעלי ערך חברתי גדול (ואף זכו בפרס מיוחד עבור כך) כמו כלי אוטומטי שעוזר לאתר נוער בסיכון שנמצא במצוקה ברשת, מערכת שמנתחת וידיאו של תינוקות כדי לזהות שיתוק מוחין, מערכת ניווט להולכי רגל להפחתת סיכוני פשיעה, מערכת לחיזוי עיכובים בטיסות ועוד. מעבר לכך, חלק מהפרויקטים היו באווירה קלילהו והומוריסטית יותר, כמו כלי למציאת כלב שהכי דומה לאדם מסוים או מנוע המלצות לאוכל המתאים ביותר לנשנוש לצד סרט נבחר.

בעוד חודש, 3-5.10, ייערך האירוע בפעם הרביעית, בבית אליאנס בירושלים. דין לנגסם, שזכה שנה שעברה במסלול הראשי, בחר לחלוק מספר נקודות שלדעתו הביאו לו ולקבוצתו את הניצחון: לכתבה המלאה >>

לגייס Data scientists זו לא משימה קלה. העלייה המשמעותית במספר החברות שנכנסות לעולם ה-Machine Learning לצד כמות הסטארטפים שפועלים בתחום הגבירו את הביקוש ל-Data scientists, מה שיוצר קשיי גיוס רבים ללא מעט חברות. יש לציין, לפני שאנחנו צוללים פנימה, כי גם חברות גדולות ותאגידים גדולים מתקשים למצוא את האנשים המתאימים ולא מדובר על מכשול שקיים רק אצל חברות צעירות או גופים לא טכנולוגים.

בדיוק לשם כך, קיימתי לפני מספר שבועות אירוע מצומצם בו חלקתי חלק מהתובנות שיש לי בנושא, המתבססות על סקר הקהילה שעשינו ולוח המשרות העשיר שמנוהל באתר זה. נתונים אלה, בשילוב לאינספור שיחות שקיימתי עם עובדים בתחום וחברות שונות המגייסות, סייעו לי לגבש מספר מסקנות וטיפים שיוכלו לעזור לכל מי שרוצה לגייס Data scientist. בנוסף להרצאה שלי, לקח חלק באירוע גם Alfie Booker המשמש כמגייס טכני ב- Google UK בחמש השנים האחרונות. אלפי עסק בעיקר בתהליך הגיוס בגוגל וכיצד ניתן לבנות אותו בצורה חכמה מול המועמדים השונים.

עיקר החלק שלי מבוסס על המצגת שהעברתי במפגש עצמו והיא מצורפת כאן לשימושכם:

לכתבה המלאה >>

פעמים רבות עולות שאלות בקהילה אודות חוקרים שונים באקדמיה העוסקים ב-Machine learning ו-Deep learning. בכדי לעשות סדר בנושא ולעזור לחברי הקהילה לקבל תמונת מצד מדויקת של כל העוסקים במלאכה באקדמיה, החלטתי ליצור רשימה מסודרת ומאוחדת שתרכז את כל החוקרים בתחום. הרשימה כוללת מספר רב של חוקרים בתחום מכל מוסדות הלימוד בארץ כאשר הם מחולקים לתחומי הפעילות שלהם (ראייה ממחושבת, עיבוד שפה טבעית וכו'). בנוסף לכך, לצד כל חוקר יש מידע נוסף אודות תחומי הפעילות העיקריים שלו, קישור לאתר האישי ועוד. השאיפה היא לשמור על הרשימה עדכנית ככל שניתן ומידי פעם אעבור עליה ואעדכן את הפרטים הרלוונטיים לכל חוקר וחוקר לכתבה המלאה >>

הצטרפו לערוץ הטלגרם שלנו כדי לא לפספס אף מידע חשוב

מדריך זה נכתב על ידי ג'ף מוסקוביץ

לפני מספר ימים כתבתי פוסט בקבוצת הפייסבוק Machine & Deep Learning Israel שעסק במספר פרויקטים שעשיתי לאחרונה. בסוף הפוסט הצעתי, בדרך אגב, עזרה לכל מי שמעוניין לקבל המלצה על קורסים רלוונטיים או איך להתחיל להתמקצע בתחום ה-Machine learning. להפתעתי גיליתי שיש הרבה אנשים בקבוצה שמעוניינים במידע הזה אז במקום לדבר עם כולם בנפרד, אני מאגד את כל ההמלצות שלי במדריך הזה שלפניכם. לפני שאנחנו מתחילים, אני אבקש סליחה מראש על שגיאות הכתיב שלי – עברית היא לא שפת האם שלי.

הרקע שלי

נתחיל עם הבהרה קצרה על הרקע שלי, מאחר וקיבלתי הרבה שאלות בסגנון הזה:

״אבל ג׳ף, בטח יש לך דוקטורט בחילוק ארוך מתקדם או משהו ויש לי רק תואר שני בזה. איך אני אסתדר עם המתמטיקה??״

יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה. זהו.

״אבל זה נושא די טכני, אני עדיין יכול לעשות את הקורסים האלה אם יש לי רק תואר ראשון במדע מחשב??״

עוד פעם, יש לי תואר ראשון בעיתונאות ועוד אחד בהיסטוריה …

תירגעו. כן, זה אפשרי.

כמו שMark Twain אמר:

"Never let your schooling interfere with your education”

דרישות קדם

דרישות הקדם היחידות הן סביב כישורי המתמטיקה שלכם, אתם תצטרכו הבנה בסיסית (באמת בסיסית) בנושאים הבאים:

  1. אלגברה לינארית.
  2. חדו"א (חשבון דיפרנציאלי ואינטגרלי).
  3. הסתברות.

לכתבה המלאה >>

בתקופה האחרונה אנחנו רואים התעניינות הולכת וגוברת במושג Machine Learning ואט אט שומעים על חברות נוספות, גדולות כקטנות, שבוחרות לאמץ את הטכנולוגיה. אז לפני שאנחנו צוללים בפוסטים הבאים לנבכיה של הטכנולוגיה המדהימה, נסביר בצורה פשוטה מה זה בכלל Machine Learning.

על פי ויקיפדיה, Machine Learning עונה להגדרה הבאה: "למידה חישובית (Machine Learning) (לעתים מכונה גם למידת מכונה) היא תת-תחום במדעי המחשב ובבינה מלאכותית ומשיק לתחומי הסטטיסטיקה והאופטימיזציה. התחום עוסק בפיתוח אלגוריתמים המיועדים לאפשר למחשב ללמוד מתוך דוגמאות, ופועל במגוון משימות חישוביות בהן התכנות הקלאסי אינו אפשרי לכתבה המלאה >>

X