כתבות עם התגית deep learning

לאחר הרבה הכנות והפקת לקחים מהקורס הקודם, גיל, ניר, ערן ואני שמחים להודיע כי אנחנו פותחים מחזור נוסף לקורס הdeep learning של הקהילה ומפרסמים לינק להרשמה לקראת המחזור הבא.

למי שלא מכיר: בשנה שעברה החלטנו ארבעת האדמינים בקבוצה לקחת את הקורס המוכר של סטנפורד "CS231n: Convolutional Neural Networks for Visual Recognition" ולהעביר אותו בצורה פורנטלית ובעברית באופן התנדבותי לחלוטין – וללא כל עלות למשתתפים. הקורס הועבר לקבוצה של 60 סטודנטים שהגיעו מידי שבוע במשך ארבעה חודשים לגוגל קמפוס כדי ללמוד על התחום. לאחר ארבעת החודשים הצמדנו לבוגרים שרצו מנטורים מהתעשייה לטובת פרויקט גמר שמציג את הידע הנרכש בקורס עצמו.

הקורס הקודם היה הצלחה. אלו שצלחו את הקורס עד סופו רכשו סט כלים חדש וידע שעזר לחלקם למצוא עבודות חדשות או לעשות שינוי קריירה בתוך הארגון בהם הם עובדים. השנה אנחנו מתכוונים להפוך את הקורס למקצועי עוד יותר וליישם את כל הלקחים שהפקנו מהמחזור הקודם. אנחנו נוסיף הדרכות על שירות הענן של גוגל, תרגולים סביב עבודות הבית וחיבור חזק יותר לתעשייה בפרויקטי הגמר. כפועל יוצא מכך זה אומר שרף הסינון עולה והרצינות שאנחנו מצפים מהמחזור החדש עולה גם היא.

כמו כן, קחו בחשבון שהקורס הוא מאוד Hands On ומתמטי לכן נדרשים גם ידע מתמטי ותכנותי ברמה גבוהה (אלגברה לינארית, חד"וא, הסתברות ופיתון). ידע זה קריטי להבנת הקורס ומטלות הבית השונות לכן אנא הירשמו רק אם יש לכם שליטה מספקת בנושאים הנ"ל.

אנחנו מציינים את הנהלים כבר עכשיו, לפני ההרשמה עצמה, כדי שתוכלו לעבור על כל התנאים ולהבין שהם מתאימים לכם. אנחנו לא מתכוונים לעגל פינות והמשמעת הנוקשה נועדה כדי שכל אחד שנבחר יפיק את המירב מהקורס ויצדיק את העובדה שדווקא הוא נבחר על פני מועמד אחר. בדיוק כמו בשנה הקודמת, גם הפעם אנחנו נקפיד על ייצוג שווה בין נשים וגברים בקורס, אך אין זה אומר שנקודה זו משפיעה על הסינון עצמו או על הרף הנדרש.

נהלים חשובים של הקורס:

לכתבה המלאה >>

DataHack הוא ארגון ללא מטרת רווח המארגן האקתון שנתי ומפגשי למידה בנושאי ביג דאטה, למידת מכונה, בינה מלאכותית ועוד. ההאקתון מתקיים בירושלים זאת השנה הרביעית ומקדם את האקוסיסטם הירושלמי הצומח, כל שנה מגיעים 400-500 משתתפים מכל רחבי הארץ לשלושה ימים אינטנסיבים של עבודה על פרוייקטים טכנולוגיים חדשניים ויצירתיים. מדובר באחד מהאירועים הטכנולוגיים הגדולים ביותר בעיר ובין ההאקתונים הגדולים ביותר בארץ.

האירוע הוא פסטיבל גדול של דאטה וטכנולוגיה, מחבר בין דיסצפלינות שונות בינהם סטטיסטיקאים, מפתחים, מעצבים, מדעני נתונים וחוקרים. כל שנה נוצרים עשרות רבות של פרוייקטים, לדוגמא בשנים קודמות פיתחו הצוותים פתרונות בעלי ערך חברתי גדול (ואף זכו בפרס מיוחד עבור כך) כמו כלי אוטומטי שעוזר לאתר נוער בסיכון שנמצא במצוקה ברשת, מערכת שמנתחת וידיאו של תינוקות כדי לזהות שיתוק מוחין, מערכת ניווט להולכי רגל להפחתת סיכוני פשיעה, מערכת לחיזוי עיכובים בטיסות ועוד. מעבר לכך, חלק מהפרויקטים היו באווירה קלילהו והומוריסטית יותר, כמו כלי למציאת כלב שהכי דומה לאדם מסוים או מנוע המלצות לאוכל המתאים ביותר לנשנוש לצד סרט נבחר.

בעוד חודש, 3-5.10, ייערך האירוע בפעם הרביעית, בבית אליאנס בירושלים. דין לנגסם, שזכה שנה שעברה במסלול הראשי, בחר לחלוק מספר נקודות שלדעתו הביאו לו ולקבוצתו את הניצחון: לכתבה המלאה >>

לגייס Data scientists זו לא משימה קלה. העלייה המשמעותית במספר החברות שנכנסות לעולם ה-Machine Learning לצד כמות הסטארטפים שפועלים בתחום הגבירו את הביקוש ל-Data scientists, מה שיוצר קשיי גיוס רבים ללא מעט חברות. יש לציין, לפני שאנחנו צוללים פנימה, כי גם חברות גדולות ותאגידים גדולים מתקשים למצוא את האנשים המתאימים ולא מדובר על מכשול שקיים רק אצל חברות צעירות או גופים לא טכנולוגים.

בדיוק לשם כך, קיימתי לפני מספר שבועות אירוע מצומצם בו חלקתי חלק מהתובנות שיש לי בנושא, המתבססות על סקר הקהילה שעשינו ולוח המשרות העשיר שמנוהל באתר זה. נתונים אלה, בשילוב לאינספור שיחות שקיימתי עם עובדים בתחום וחברות שונות המגייסות, סייעו לי לגבש מספר מסקנות וטיפים שיוכלו לעזור לכל מי שרוצה לגייס Data scientist. בנוסף להרצאה שלי, לקח חלק באירוע גם Alfie Booker המשמש כמגייס טכני ב- Google UK בחמש השנים האחרונות. אלפי עסק בעיקר בתהליך הגיוס בגוגל וכיצד ניתן לבנות אותו בצורה חכמה מול המועמדים השונים.

עיקר החלק שלי מבוסס על המצגת שהעברתי במפגש עצמו והיא מצורפת כאן לשימושכם:

לכתבה המלאה >>

פעמים רבות עולות שאלות בקהילה אודות חוקרים שונים באקדמיה העוסקים ב-Machine learning ו-Deep learning. בכדי לעשות סדר בנושא ולעזור לחברי הקהילה לקבל תמונת מצד מדויקת של כל העוסקים במלאכה באקדמיה, החלטתי ליצור רשימה מסודרת ומאוחדת שתרכז את כל החוקרים בתחום. הרשימה כוללת מספר רב של חוקרים בתחום מכל מוסדות הלימוד בארץ כאשר הם מחולקים לתחומי הפעילות שלהם (ראייה ממחושבת, עיבוד שפה טבעית וכו'). בנוסף לכך, לצד כל חוקר יש מידע נוסף אודות תחומי הפעילות העיקריים שלו, קישור לאתר האישי ועוד. השאיפה היא לשמור על הרשימה עדכנית ככל שניתן ומידי פעם אעבור עליה ואעדכן את הפרטים הרלוונטיים לכל חוקר וחוקר לכתבה המלאה >>

דברה די סנטו, מנהלת את חטיבת הבריאות של ווטסון ב-IBM, יצאה בראיון לגלובס בקביעה דיי בעייתית: "המחשב שלנו לעולם לא יחליף רופא". מדוע מדובר בקביעה בעייתית? כי אם חטיבה שמשקיעה כל כך הרבה כסף במחקר ופיתוח סביב בעיה מסוימת והיא בעצמה לא מאמינה שהיא תוכל לפתור אותה אז מצב זה מעלה המון סימני שאלה על הפעילות הכוללת של החטיבה הזו.

הדבר הראשון שאומרים ליזם או יזמת שמקימים את החברה שלהם הוא "להתאהב בבעיה ולא בפתרון". במקרה שלנו הבעיה היא שאנשים מתים מאבחון לא מדויק/מהיר מספיק של המחלות שלהם או מנגד הם לא מקבלים את הטיפול המתאים. על פי הכתבה נראה כי IBM מגדירה את הבעיה כאחרת לגמרי: הבעיה היא שרופאים צריכים יותר עזרה בתהליך קבלת ההחלטות. התבוננות עקומה מאוד על הסוגיה כולה. בסופו של יום, המטרה היא להציל חיים ולעשות זאת בכל דרך אפשרית, כאשר היעד הסופי הוא לעשות זאת בצורה הטובה ביותר – גם אם זה אומר להוציא את הגורם האנושי מחוץ לתמונה.

מה יקרה בעוד כמה שנים שהמחשבים שלהם עצמם יעקפו את היכולות של הרופא האנושי? הם פשוט יסגרו את הכל כי המחשב כבר לא נמצא בפוזיציה של רק "עוזר", מה יקרה שהמחשב יגיע לרמת דיוק כל כך גבוהה שתייתר לחלוטין את הצורך ברופא? האם הם לא ינגישו את הטיפול לציבור הרחב? אי אפשר לצאת למסע כל כך גדול שאתה לא באמת רוצה להגיע לפסגת ההר. לכתבה המלאה >>

עדכון 2018:

חברת NVIDIA היא אחת החלוצות בתחום הבינה המלאכותית אשר מרבה לפרסם עבודות ומחקרים פורצי דרך מידי שנה. כחלק משאיפותיה לחלק את הידע שצברה, החברה דואגת להעצים ולטפח את הקהילה העולמית, ועל כן מארגנת NVIDIA מדי שנה את כנס (GPU Technology Conference (GTC הבינלאומי. בהמשך להצלחה של הכנס בשנה שעברה, מתכוונת NVIDIA לקיים את הכנס בשנית בישראל כחלק מסדרת כנסים ברחבי העולם המתמקדים בבינה מלאכותית וביישומים שלה בתחומי החיים השונים. הכנס יתקיים השנה בין ה-17 ל-18 לאוקטובר בגני התערוכה בתל אביב.

בשנת 2017, נכחו ב- GTC בישראל כ-2,000 מפתחים, יזמים ואנשי טכנולוגיה, אשר רצו להכיר לעומק את עולם הבינה המלאכותית. השנה חברת NVIDIA חוזרת עם כנס מושקע במיוחד ומתכננת מגוון רחב של הרצאות, סדנאות, הדגמות ומיצגים שידגימו את פריצות הדרך האחרונות בתחום. השנה NVIDIA שמה דגש רב על תחום ה-Deep Learning ועל תהליכי אימון מואצים של מודלים – כך שצפוי לנו הרבה תוכן איכותי בנושאים אלו.

לירון פרינד-סעדון, מנהלת קשרי מפתחים ב-NVIDIA ישראל, התייחסה לכנס והסבירה: "בכנס נציג יישומים מתקדמים של NVIDIA בעולמות הבינה המלאכותית, יחד עם שותפינו הטכנולוגיים. בכלל זה: כלי תוכנה כדוגמת TensorRT, Deep stream ונעניק למשתתפים את הכלים הנדרשים כדי להאיץ את פיתוח המוצרים שלהם". פרינד-סעדון מוסיפה ומציינת: "בין אם אתה רק בתחילת דרכך או כבר מומחה, תמיד יש נושאים חדשים ללמוד עליהם בכנס שלנו. תחום הבינה המלאכותית מתפתח בקצב מהיר ומציג פריצות דרך משמעותיות כל הזמן. הדרך הטובה ביותר להישאר מעודכן היא באמצעות התמדה בלמידה ובחשיפה לתכנים חדשים".

מלבד הסדנאות וההרצאות, הכנס מאפשר לסטארטפים מקומיים להכיר את תכנית Inception של חברת NVIDIA. תכנית זו היא מאיץ סטארטאפים וירטואלי, המסייע לסטארטאפים במהלך השלבים המאתגרים של פיתוח המוצר, יצירת אב טיפוס והשקת המוצר. חברי Inception זוכים למעטפת רחבה הכוללת סיוע שיווקי, חשיפה מוקדמת לטכנולוגיות מובילות, חיבור לארגוני Enterprise ושימוש בחומרה מתקדמת, כמו גם גישה למומחים של NVIDIA בתחום ה- Deep Learning שמסייעים להם בתהליך אימון המודלים.

מלבד זאת, חברי Inception הקיימים ישתתפו בתחרות Inception לסטארטאפים. התחרות, אשר התקיימה גם בשנה שעברה, מפגישה בין שישה סטארטאפים מתקדמים בתחום אשר יתחרו על המקום הראשון מול חבר שופטים מבכירי התעשייה. שנה שעברה, המנצחת הייתה חברת Cognata אשר מפתחת מערכת המאפשרת ליצור סימולציות עבור כלי רכב אוטונומיים ובכך לדמות תנאי שטח וסביבה מרובים.

השנה הסטארטפ הזוכה יקבל פרס כספי בסך 100,000$ ובנוסף ב- NVIDIA DGX Station.

*אם ברצונכם לקחת חלק בסדנאות או בהרצאות שיתקיימו בכנס,  אתם מוזמנים להשתמש בקופון שנוצר במיוחד לקהילה אשר מעניק לכם 20 אחוז הנחה על רכישת כרטיס לכנס ול-Training ב-18 באוקטובר.

 ההרשמה לכנס בקישור הבא, קוד ההנחה – CMOML

2017:

חברת Nvidia האמריקאית מוכרת היטב לכל מי שעוסק ב-Deep learning בעיקר הודות לכרטיסים הגרפיים המתפקדים כלב הפועם של מרבית מערכות המחשוב בתחום. כרטיסים גרפיים אלו מסייעים לחוקרים רבים להגיע לתוצאות מרשימות תוך קיצור משמעותי של זמני החישוב. ההבנה שכרטיסים גרפיים אלו חיוניים לאימון רשתות נוירונים מלאכותיות הובילה את חברת Nvidia להשקיע רבות במחקר ופיתוח סביב טכנולוגיות אלה. כפועל יוצא מכך, Nvidia שוקדת רבות על פיתוחים שיהיו מותאמים לצרכים החדשים שעולים ללקוחותיה ולאחרונה פתחה מרכז פיתוח חדש בישראל בו היא מרכזת את מאמצי החברה בתחום ה-Deep learning.

מרכז הפיתוח המקומי הוא רק הסנונית הראשונה לפעילות החברה בארץ ו-Nvidia אף עתידה לקיים את הכנס השנתי הגדול שלה, ה-GPU technology conference, בישראל. בכדי ללמוד על מרכז המחקר המקומי של החברה ועל הקשר ההדוק המתפתח בין Nvidia לישראל קיימתי ראיון עם אבי שפירא, מנהל מרכז המחקר והפיתוח של Nvidia בישראל, אשר סיפר לנו על הדרך שהחברה עברה, על עתידו של מרכז הפיתוח הישראלי ועל הכנס הגדול שמארגנת החברה בישראל.

מרכז הפיתוח המקומי

מרכז הפיתוח הישראלי של Nvidia נפתח בחודש ספטמבר 2016 וכעת מעסיק 20 עובדים שעוסקים בשיפור מוצרי החברה עבור משימות הקשורות לאימון אלגוריתמים לומדים. שפירא ציין כי המרכז הישראלי הוא חלק משמעותי ממאמצי הפיתוח של Nvidia העולמית וכי למרכז מספר תחומי אחריות מרכזיים. "המרכז של Nvidia בישראל הינו חלק מקבוצת הפיתוח העולמית של Nvidia ומתמקד במוצרי הליבה של החברה בדגש על חבילות תוכנה (SDK) וכלי פיתוח Debugger, Profiler וכו'. הכלים מאפשרים ללקוחות שלנו להאיץ את בניית המוצרים שלהם במגוון תחומים כדוגמת רכבים אוטונומיים, רחפנים ורובוטים המשלבים טכנולוגיות של בינה מלאכותית ולמידה עמוקה. כמו כן אנחנו ממשיכים להרחיב ולבנות צוותי פיתוח המשולבים עם הטאלנט המקומי."

לא לחינם בחר שפירא להתייחס בסוף דבריו ל-"הטאלנט המקומי" והוא הרבה לציין זאת גם בהמשך. מרכז הפיתוח של החברה עתיד, על פי תכניות החברה, לגדול באופן משמעותי בתקופה הקרובה ולגייס לשורותיו חוקרים ומפתחים רבים שיסייעו לחברה להגיע ליעדיה. שפירא אף מחדד ומדגיש כי הם מחפשים מומחים בתחומי הלמידה העמוקה שהיא לב ליבו של מרכז הפיתוח: "אנו צופים גידול בסניף המקומי של עשרות אנשים וממשיכים לחפש טאלנטים בתחומי ה-Deep Learning לצרף לשורותינו".  גורם משמעותי נוסף ששותף לחזון זה הוא ג'ף הרבסט, סגן נשיא לפיתוח עסקי בחברה, אשר ביקר בתחילת החודש בישראל וציין כי "Nvidia מעוניינת לגיוס כ–50 איש בשנה הקרובה למרכז הפיתוח". לכתבה המלאה >>

מדריך זה נכתב על ידי ניר בן-צבי חוקר בתחום הראייה הממוחשבת בחברת Trigo.

בשנים האחרונות אנו עדים לשיפור הניכר שהשיגו אלגוריתמים לומדים בלא מעט תחומים. אלגוריתמים אלו, כדי שבאמת יספקו תוצאות מרשימות, מצריכים כוח עיבוד רציני ומחייבים את העוסקים בנושא להרכיב מערכות מחשוב מתקדמות מאוד. מאחר ומדובר על נושא מורכב למדי, החלטתי לכתוב את המדריך הבא שיסייע לכם לבחור את הרכיבים המתאימים ביותר לצרכים שלכם. חשוב לי להדגיש כי ניתן להעניק מענה לסוגיה זו בכמה אופנים ומדריך זה יכסה זווית אחת בלבד.

אתחיל מלחלק את האפשרויות הקיימות בפנינו לארבע קטגוריות עיקריות:

  1. מחשב שולחני פשוט יחסית עם כרטיס גרפי בודד.
  2. מחשב הזהה למחשב מס׳ 1, הנבדל ממנו בכך שיש לו שני כרטיסים גרפיים (או הכנה לכרטיס גרפי נוסף בעתיד).
  3. מחשב לאימון ״כבד״ – כלומר, מחשב בעל ארבעה כרטיסים גרפיים ומעלה.
  4. מחשבים לאימון כבד אף יותר, כאשר 8 מאיצים גרפיים זה בד״כ המקסימום (ראו הערה בהמשך).

לכתבה המלאה >>

מרבית המאמרים והכתבות בבלוג עוסקים ב-Machine Learning בהיבטים הקשורים לראייה ממוחשבת או עיבוד שפה טבעית, ולעתים נדירות אנו שומעים שימושים יצירתיים בתחומי פעילות שונים. מידי פעם אני מנסה להעניק הצצה לזוויות נוספות של הטכנולוגיה ולחשוף כיצד Machine Learning יכול לסייע במגוון רחב של תחומים.

אחד התחומים שמתחיל לאמץ לחיקו טכנולוגיות מתקדמות הוא תחום גיוס העבודה (HR), שרותם לאחרונה אלגוריתמים חכמים בכדי ליצור מודלים שיחזו בדיוק רב את מידת ההתאמה בין חברה מגייסת לבין מועמד פוטנציאלי. בשיטה "הישנה" מדובר עדיין על אתגר משמעותי שמצריך, משני הצדדים, להשקיע זמן לא מבוטל בכדי למצוא התאמה מלאה. בסופו של יום, כולנו היינו מעדיפים פשוט למצוא ישירות את החברות המתאימות לנו ביותר – ובאותה הנשימה, החברות עצמן היו מעדיפות לקצר באופן משמעותי את התהליך ולקלוט את העובד הרלוונטי כמה שיותר מהר.

בכדי ללמוד עוד על התחום ועל הדרך בה אלגוריתמים מעולם ה-Machine Learning מצליחים לחזות התאמות מסוג זה, ערכתי ראיון עם אבי גולן מחברת ZipRecruiter האמריקאית, בה הוא משמש כמנהל הפעילות של החברה בישראל וסגן נשיא להנדסה בחברה העולמית. לכתבה המלאה >>

קהילת ה-Machine learning בארץ הולכת וגדלה מידי יום ובכל שבוע ישנם מספר אירועים העוסקים בתחום. בכדי לעשות סדר בכל האירועים פתחתי יומן משותף לחברי הקהילה בו הם יוכלו להתעדכן בנוגע לאירועים עתידיים הרלוונטיים אליהם. ניתן לצפות ביומן דרך התצוגה המקדימה באתר או לצרף את היומן לשאר היומנים שלכם (ממולץ). ניתן לצרף היומן על ידי לחיצה על כפתור ה- "+" שנמצא בתחתית היומן. כמו כן, היומן זמין גם בקישור הבא.

בהזדמנות זו אני אשמח לפנות לכל מארגני האירועים/כנסים/מיטאפים המעוניינים להוסיף את האירוע שלהם ולבקש מהם לשלוח לי הודעה כדי שאוכל להעניק להם הרשאות להוספת אירועים ליומן.

בתאריך ה-25.4 קיימנו את המפגש השני של Machine Learning Israel Seminar אשר עסק ב-NLP. המפגש הנוכחי, וכך גם שאר המפגשים בעתיד, בנוי משתי הרצאות: אחת מטעם חוקר מהאקדמיה והשנייה מטעם גורם מהתעשייה (סטארטאפ או חברה). כפי שהבטחתי אני מצרף כאן את המצגות של שני המרצים. בהזדמנות זו אני מציע לכם להירשם לניוזלטר של הקהילה ובכך לא לפספס את ההרשמה לאירוע הבא.

הרצאה ראשונה:

שם המרצה: Roee Aharoni
חברה: Bar Ilan University's NLP Lab
תפקיד: Phd Candidate at Bar Ilan University's NLP Lab
לצפייה במצגת לחצו כאן.

תיאור ההרצאה:

 

לכתבה המלאה >>

X